The coefficients of the Ihara zeta function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge Reconstruction of the Ihara Zeta Function

We show that if a graph G has average degree d ≥ 4, then the Ihara zeta function of G is edge-reconstructible. We prove some general spectral properties of the Bass–Hashimoto edge adjancency operator T : it is symmetric on a Kreı̆n space and has a “large” semi-simple part (but it can fail to be semi-simple in general). We prove that this implies that if d > 4, one can reconstruct the number of n...

متن کامل

The Ihara Zeta Function of the Infinite Grid

The infinite grid is the Cayley graph of Z × Z with the usual generators. In this paper, the Ihara zeta function for the infinite grid is computed using elliptic integrals and theta functions. The zeta function of the grid extends to an analytic, multivalued function which satisfies a functional equation. The set of singularities in its domain is finite. The grid zeta function is the first comp...

متن کامل

Properties Determined by the Ihara Zeta Function of a Graph

In this paper, we show how to determine several properties of a finite graph G from its Ihara zeta function ZG(u). If G is connected and has minimal degree at least 2, we show how to calculate the number of vertices of G. To do so we use a result of Bass, and in the case that G is nonbipartite, we give an elementary proof of Bass’ result. We further show how to determine whether G is regular, a...

متن کامل

The Ihara-Selberg zeta function for PGL3 and Hecke operators

A weak version of the Ihara formula is proved for zeta functions attached to quotients of the Bruhat-Tits building of PGL3. This formula expresses the zeta function in terms of Hecke-Operators. It is the first step towards an arithmetical interpretation of the combinatorially defined zeta function.

متن کامل

The Ihara zeta function for graphs and 3-adic convergence of the Sierpiński gasket

Imagine you were going for a run downtown. You have a set distance you want to go, but you don’t like running the same path two days in a row. You don’t like stopping to turn around and take the same road since this breaks your stride, and just repeating some loop multiple times makes you bored. So, how many options do you have? This situation could be modeled with graph theory, where each inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Involve, a Journal of Mathematics

سال: 2008

ISSN: 1944-4176

DOI: 10.2140/involve.2008.1.217